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SUMMARY 

Craig simulations of preparative high-performance liquid chromatography were 
carried out for heavily overloaded separations as a function of the separation 
conditions (small-sample retention and column efficiency, sample size). These data 
were used to derive conditions for a maximum production rate (grams per hour) of 
purified product, and the results were compared with the treatment of Knox and 
Pyper. There is an optimum sample size and column plate number for every 
separation; these optimum conditions are related to the desired recovery of purified 
product and to the retention (capacity factor, k’; separation factor, cc) of a small sample 
under the same chromatographic conditions. 

Relative to the case of a 99.8% recovery of purified product from the feed, 
a 3-fold higher production rate is possible if sample size and column plate number are 
adjusted for 95% recovery of pure product; a IO-fold higher production rate is possible 
for conditions that give a 50% recovery of pure product. The required (optimum) plate 
number is halved on going from touching-band (99.8% recovery) separation to 95% 
recovery, and further halved for 50% recovery vs. 95% recovery. The maximum 
production rate also varies with sample retention (k’, CI for a small sample); a maximum 
value of x is preferred and k’ should be between 0.5 and 3. 

INTRODUCTION 

The last 5 years have witnessed a dramatic expansion in our understanding of 
preparative high-performance liquid chromatography (HPLC) carried out under 
isocratic elution conditions - 1 ’ *. The next major challenge is to digest this large mass of 
information and render it usable by practical workers. Knox and Pyper’ presented the 
first comprehensive effort of this kind, based on certain approximations that have 
since been questioned by other workers’7’18 (see the discussion in the theory section). 
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Although the treatment of Knox and Pyper cannot be regarded as quantitative, in our 
opinion their elegantly simple model still provides a clear and reliable guide for the 
better understanding and systematic optimization of preparative HPLC separations, 
which we hope to demonstrate here. 

The work described here and in Part III9 (based on the Craig mode13,4) attempts 
to improve the accuracy of the Knox-Pyper treatment, and to further clarify various 
relationships that govern preparative HPLC when carried out under conditions that 
maximize the production rate PR (grams per hour of purified product). A similar effort 
by Golshan-Shirazi and Guiochon’ 7,18 appeared when this study was completed, and 
a limited attempt has been made to compare our conclusions with those reported by 
them. Finally, it should be emphasized that other factors can limit the quantitative 
reliability of conclusions presented here and in their papers. Part 1112’ examines one of 
these effects (variable column capacities for two compounds that are being separated). 

THEORY 

Knox-Pyper model 
The treatment of preparative HPLC put forth by Knox and Pyper’ predicts that 

elution bands will assume the shape of “nested right triangles” as the sample mass is 
increased, which is approximately the case in practice. Knox and Pyper then consider 
separation conditions such that two adjacent bands X and Y will just touch; this 
corresponds to the practical case where a maximum sample size is injected such that the 
recovery and purity of each component are 100%. This situation has been referred to 
as the “touching-band” case6. 

A number of simple relationships can be derived from this treatment’s6, some of 
which are summarized in Table I (see the list of symbols at the end of the paper). Thus 
band width W can be predicted (eqns. l-3) as a function of sample size, column 
capacity w, and the chromatogram for a small-sample separation (values of the plate 
number No and capacity factor k’). Likewise, the column capacity can be determined 
from a second run in which the sample size is large enough to result in some band 
broadening (eqn. 4). For every separation, an optimum value of the column plate 
number No (for a small sample) is predicted, such that the production rate PR is 
a maximum (eqns. 5-7). Finally, the maximum sample volume which will not affect the 
separation is given by eqn. 8. 

The Knox-Pyper model ignores (a) the moderate departure of actual bands from 
right-triangular shapes, especially at higher loadings, and (b) the interaction of two 
adjacent (large-sample) bands during their migration through the column; i.e., it is 
assumed that band migration for each solute proceeds independently of the presence of 
other compounds in the sample. As has been shown by Guiochon and co-workers (ref. 
11 and later papers), actual separations under mass-overload conditions depart 
significantly from the simple picture of Knox and Pyper, especially for large plate 
numbers, small values of a and large samples. This is most strikingly exhibited in 
drastic changes in band shape, and the development of displacement boundaries 
between severely overlapping bands. However, practical chromatographers are 
primarily interested in the results of a preparative separation; which include 
production rate, recovery and purity of the desired product, that is, the way in which 
these quantities vary with experimental conditions, regardless of the contributing band 
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TABLE I 

RELATIONSHIPS THAT CAN BE DERIVED FOR THE TOUCHING-BAND CASE (ASSUMES 
NESTED-RIGHT-TRIANGLE BANDS) 

1 Band width Wean be predicted as a function of sample size W, if the column capacity W, is known”, and 
a small-sample run (same conditions) has been carried out; for a compound Y, having a small-sample 
capacity factor k,, retention time fy, and plate number No, the band width W is given as 

W = (4N,)_ i’l 2, (1) 

where 

N, = N&l + (3P3)wx.l (2) 

and 

w xn = WW(l + kJ12(%/~S) 

wY is the weight of Y injected. 

(3) 

2 Column capacity W, for a compound Y can be obtained from eqns. l-3, by solving for w,: 

w, = (3/g) WWV,I(N0 - &)I [Ml + U2 WY (4) 

Thus a value of w, can be obtained from a small-sample run (provides values of N,,, k,) and a second run 

(same conditions) with a larger sample wy (gives a value of NJ. 

3 There is an optimum (small-sample) plate number Nor,, for every touching-band separation: 

No,, = 16 4 [(l + Q/,$? Ma - 111’ (5) 

where a is the separation factor (equal to k,/k,) and 

q = N,lNa (6) 

For a maximum production rate PR, q will have a value of about 3. The quantity q can also be described in 
terms of the resolution of the corresponding small-sample separation Rf: q = (Rf)‘. 

4 The sample size wy for touching bands is given by 

WY = (wJ6)Ka - l)l&Xq - II/q1 (7) 

5 The sample volume V, will not affect a touching-band separation, provided that 

v, < (1/2)Q - f,) (8) 

where F is the flow-rate (ml/min) and f, and t, are the retention times (min) of bands X and Y. 

W, has also been referred to as the “saturation capacity” of the column, i.e., the maximum weight of 
sample that can be held by the stationary phase. 

shapes. It is this question that we propose to examine in this paper, using the concepts 
developed by Knox and Pyper’ as a guide. 

Craig simulations 
We have shown that the Craig distribution is a reasonable model for the 
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chromatographic process under overload conditions. Experimental work reported by 
us is in good agreement with conclusions reached on the basis of the Craig mode13-6, 
and our general conclusions6 match those of other workers who have approached 
preparative HPLC from different directions 1,21 One limitation in our previous . 
studies, however, is that the computer programs used by us were limited to separations 
that did not simultaneously involve heavily overloaded columns and/or large plate 
numbers. We have since extended our approach to allow simulations for any sample 
size, columns of any plate number and either isocratic or gradient elution. 

The present computer program (CRAIG4) allows the simulation of any 
two-component separation. The general approach is similar to that described in refs. 
4 and 22. The column is divided up into n, equilibrium stages, with movement of the 
entire volume of mobile phase from one stage to the next during each transfer. The 
two-component Langmuir equations assumed here are given by eqns. 8 and 9 in ref. 4. 
This isotherm is numerically approximated by a new (modified compared with refs. 4 
and 22) algorithm for approximating the distribution of a two-compound mixture 
between stationary and mobile phases in each Craig stage (described in the Appendix). 
This algorithm has been tested for various (artificial) two-component mixtures (values 
of k’ and concentration varying for each component) vs. exact calculations from the 
two-component Langmuir model (by numerical means); our algorithm has been found 
to be accurate to within about f 10% for a wide range of sample concentrations and 
sample k’ values. Other tests of the accuracy of this program (CRAIG4) will be offered 
below. 

The present software provides simulations that can be expressed either 
graphically (e.g., Fig. 1) or in table form (e.g., Table II). We have found both formats 
to be useful. It should be noted that the number of stages n, in these Craig simulations 
is equal to N&‘/(1 + k’), i.e., Craig stages are not the same as column plates23. 

RESULTS AND DISCUSSION 

Verification of present Craig simulations 
The present software was subjected to various tests to establish internal 

consistency; see the related discussion in refs. 3,4 and 22. A rigorous computer model 
based on different principles to Craig simulation has been described by Ghodbane and 

(b) 

‘, 
Fig. 1. Craig simulation (CRAIG4) for isocratic separation with following conditions: k, = 1, k, = 1.7, 
W&V, = w,/w, = 0.05. n, = 100 (No = 200). (a) Individual solute bands: (b) composite chromatogram. 

(a) 
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TABLE II 

CRAIG4 OUTPUT (PARTIAL) FOR A SIMULATED SEPARATION WITH THE FOLLOWING 
CONDITIONS: n, = 100 (No = 200) k, = I, k, = 1.7 (a = 1.7) w,/w, = w,/w, = 0.05 

Transfer No. Cumulative % eluted” Purity in eluted fraction I%) 

x Y x Y 

is8 84.5 0.7 (99.3) 99.2 84.1 
192 89.9 1.3 (98.7j 98.6 90.8 
196 93.8 2.2 (97.8) 97.7 94.1 

200 96.5 3.8 (96.2) 96.2 96.5 
204 98.1 6.3 (93.7) 94.0 98.0 
208 99.1 10.0 (90.0) 90.8 99.0 
212 99.6 15.0 (85.0) 86.9 99.6 

a Numbers in parentheses refer to the recovery of Yin the second fraction; other values refer to the 
recovery of Xor Yin the first fraction, eluted before the transfer number; e.g., after 200 transfers, 96.5% of 
X has been eluted in this eluted fraction, the purity of X in this fraction is 96.2%, the amount of Y&ted is 
3.8%, 96.2% of Y remains on the column and the purity of Yin the fraction following the first fraction is 
96.5%. 

Guiochonl’; we shall compare certain predictions of the latter model with those given 
by our CRAIG4 program. Additionally, experimental data reported by us earlier’ will 
be used as a further check on the accuracy of these Craig simulations. 

CRAIG4 vs. Ghodbane and Guiochon model. We reported previously6 that the 
Knox-Pyper treatment requires a correction factor of about 1.5-fold in sample size in 
order to match experimental results (band widths Wand plate numbers ZV). A similar 
discrepancy was noted for comparisons of Craig with experimental data3. Further 
comparisons that suggest double the samples sizes in Craig simulation compared with 
experimental separations are reported in a later paper24. The model of Ghodbane and 
Guiochon has been shown15 for several systems to provide good agreement with 
experimental data for a single-component sample as a function of sample size. 
Qualitative agreement with the latter model has also been demonstrated between 
theory and experiment for some two-component samples20*25. Therefore, if we wish to 
compare Craig simulations with the model of Ghodbane and Guiochon, it will be 
necessary to increase the sample size in the Craig simulations by a factor of 1.5-2.0 
compared with those assumed in the Ghodbane and Guiochon model”. 

Ghodbane and Guiochon14 reported results for several simulated separations 
that involve lower plate numbers (797 < No < 1645). These separations are 
conveniently duplicated by Craig simulation, as the number of corresponding Craig 

y A referee questioned whether errors in the isotherm that we have assumed (see Appendix) could 
account for the 1.5-2.0-fold error in predictions by Craig simulation. We consider this unlikely, as totally 
different numerical approximations to the Langmuir isotherm were used previously (polynomial fit?) and 
in the present Craig simulations (see Appendix), but each set of isotherms gives consistent results. Also, note 
that the 1.8-fold correction factor of Table II is constant over a wide range in separation conditions 
(including sample size). Finally, the factor 1.5 required in the Knox-Pyper model to achieve agreement with 
experiment is also suggestive of some more basic problem. 
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TABLE III 

COMPARISON OF PREPARATIVE HPLC SEPARATIONS PREDICTED BY CRAIG4 KS. MODEL 
OF GHODBANE AND GUIOCHON“’ 

Two-component sample A-B, with weight of B = three times that of A; k, = 4.6, k, = 5.0 (u = 1.09); plate 

numbers as indicated. 

Conditions wIwsL? Predicted recovery of pure A or B (%)” 

Craig4 ReJ T 

A B A B 

No = 797, 98% pure A and B recovered 0.004 
0.010 
0.025 

No = 797, 95% pure A and B recovered 0.004 
0.010 
0.025 

Na = 1055, 98% pure A and B recovered 0.004 

0.010 
0.025 

No = 1055, 95% pure A and B recovered 0.004 

0.010 
0.025 

10 53 11 55 
I 45 I 41 

3 25 3 28 
23 76 24 82 
18 13 19 14 

10 53 11 56 
23 61 24 63 
16 59 18 62 
I 31 8 34 

39 87 40 88 

32 82 34 84 

17 60 19 64 

’ Total sample weight divided by w,. 
b Recovery of material with indicated purity (95 or 98%). 
’ Predictions of Ghodbane and Guiochon modeli for a sample that is 1.8-fold smaller than for 

CRAIG4 simulations (CRAIG4 sample size shown above). 

stages is n, < 2000, and computer run times are less than 16 h (IBM-AT with math 
coprocessor). Table III summarizes recovery data (for fractions of either 95% or 98% 
purity) for varying plate numbers and sample size, obtained from Figs. 3 and 4 in ref. 
14. Corresponding predictions from CRAIG4 are also shown for comparison, based 
on a (best-lit) discrepancy in sample size of 1 .&fold. The overall agreement is + 2% 
(absolute) or + 5% (relative). 

Another comparison of CRAIG4 with the Ghodbane and Guiochon model is 
shown in Fig. 2A and B for No = 1645 and a (unadjusted) sample size of w/w, = 0.025. 
The CRAIG4 sample size has been increased 1.8-fold (w/w, = 0.045) for this 
comparison. Minor differences can be seen between the two simulations, but there is 
essential agreement in the overall shapes of the individual and composite bands. 

CRAIG4 vs. experimental data. Fig. 2C and D compares experimental (Fig. 2D) 
and simulated (Fig. 2C) chromatograms for the separation of a mixture of two 
xanthines with a total sample size equal to 11% of the column capacity w,. The sample 
size assumed in the Craig simulations was 1.8 11% = 20% for this comparison; the 
other parameters (see Fig. 2C) were the same for both CRAIG4 and experimental runs. 
There is good agreement between these simulated and experimental results. Note also 
the sharp displacement front between the two bands (computer simulation, Fig. 2C). 
Further comparisons of experimental and simulated runs for mass-overloaded 
gradient elution are provided in another paperz4. 

Assumptions. It should be recognized that the present Craig model assumes (1) 
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!LI\ __.:: 
3 4 5 6 3 4 5 6 

3 4 mill 5 
6 

Fig. 2. Comparison of CRAIG4 simulations with model of Ghodbane and Guiochon’J (A, B) and with an 
experimental separation (C, D). (A) CRAIG4 simulation for separation of sample in Table 11; No = 1645, 
W/W., = 0.045 (B:A = 3: 1): k, = 4.6, kb = 5.0; (B) same as (A) except for data in ref. 7 with w/w, = 0.025; (C) 

CRAIG4 simulation for separation of sample with No = 5570, k, = 1.85, k, = 3.15, W/W, = 0.20; (D) 
experimental separation of two xanthines corresponding to separation (C) (ref. 14) with n~/wq = 0.11,2.5 mg 
of hydroxyethyltheophylline (HET) and 25 mg of hydroxypropyltheophylline (HPT). 

a Langmuir isotherm for each compound and mixtures thereof, and (2) equal W, values 
for each compound in the mixture. These assumptions appear reasonable for typical 
samples, which consist of compounds of similar structure. However, many experi- 
mental separations appear to deviate significantly from this “ideal” behavior (see Part 
IIIzo). The present discussion should therefore be regarded as semi-quantitative, 
rather than precise. The above I.52.0-fold discrepancy in experimental ,w. Craig- 
simulation sample sizes should also be kept in mind, although we have corrected for 
this discrepancy in final summaries reported here (e.g., Figs. 9 and 11). Our objective in 
this study is to uncover general (if approximate) relationships for application to 
preparative HPLC, rather than to present precise equations for predicting preparative 
HPLC separations exactly. 

Craig simulations 
Simulations as a function of sample size were first carried out for a wide range of 

conditions: k’ values for each component (1 < k’ < 6), values of CI (1.2 ,< CI < 2) and 
plate number No (20 d No < 2000). These studies were intended to provide an overall 
picture of separation under heavily overloaded conditions. Fig. 3 provides some 
typical results for the case of k, = 1 .O and k, = 1.4 (a = 1.4) No = SOO”, W, = w,” and 

’ The value of No reported is always for the first band X. As a given number nE of Craig stages is 
selected for each simulation, and as t3 No = (k’ + 1) n,/k’. the value of No for Y will always be slightly 
smaller. This was not corrected for in this study, but its effect on our final conclusions is not very significant. 
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i 

I 
! 

Wx/Wr = 005 w,/w, = 0.10 

Fig. 3. Craig simulations showing effect of sample size on separation (cx = I .4). Conditions: k, = 1, h, = 1.4, 
n, = 400 (N, = 800). 

different column loads. Chromatograms are shown for sample sizes w&v, that vary 
from 0.00002 to 0.10. The quantity X/Y in Fig. 3 refers to the recovery of 99% pure 
product (Xor Y) from the separation. Thus, for X/ Y = 92/90,92% of 99% pure X and 
90% of 99% pure Y are recoverable in their separate fractions (as in Table I). Here and 
elsewhere we shall characterize the degree of separation achieved by the recovery of 
99% pure product (values of X/Y); that is, we shall assume that the aim of the 
separation goal is the production of product of 99% purity. Guiochon and 
co-workers’2-14,17 presented data for the corresponding recoveries of less pure 
product (95% or 98% pure); see also the data in Table II. 

Fig. 4 illustrates the effect of plate number No on the separation in Fig. 3 for 
w,/w, = 0.05 or 0.10 (50 < N,, < 400; o! = 1.4). An increase in No increases the yield of 
99% pure Xand Y (X/ Y%). Fig. 5 shows a similar series of separations to those in Fig. 
3 (sample size varying), for a different value of c( (a = 1.7). The separations in Fig. 
5 (for larger samples) are repeated in Fig. 6, but with varying ratios w,/w~. These latter 
chromatograms illustrate the compression of band X and the “tag-long” of band 
Y (caused by a large preceding band of x) discussed by Ghodbane and Guiochon’ ‘,l*. 

Best conditions for maximum production rate 
Experimental conditions (mobile phase, stationary phase) should first be 
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Fig. 4. Craig simulations showing effect of plate number No on separation for two different sample sizes 
(bv,,i~. = IC.~/W, = 0.05 and 0.10); k, = 1, k, = 1.4. 

w,/w, = 2x10-5 

X/Y = 100/100% 

!d_ 
w*/ws = 0.10 

w,/w, = 0.025 

100/100% 

\ 

A 

i 

71/82% _bL 
w, /VI, = 0.20 

w,/w, = 0.05 

Fig. 5. Craig simulations showing effect ofsample size on separation (a = 1.7). Conditions: k, = 1, k, = 1.7 
n, = 400 (N, = 800). 
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Wx,Wr = 0.20 

WY/W, =o.oz 

Fig. 6. Craig simulations showing effect of different relative concentrations of two components (X and I’). 
Conditions as in Fig. 6, except relative weights of X and Y differ. 

selected for maximum values of c(, as this variable is by far the most important in 
preparative HPLC6. In this study we assumed various values of (x, then studied the 
effects on the production rate PR of changes in k’ (solvent strength), plate number (No) 
and sample size. 

We also considered the production rate as a function of the recovery of purified 
product. In general, if we are willing to accept a lower recovery during each run, the 
production rate will be higher ‘z-14 However, maximizing PR without regard for . 
product recovery (i.e., accepting very low product recoveries) makes little economic 
sense. Usually there will be a substantial cost associated with reprocessing less pure 
product from a preceding HPLC run, and we assume that recoveries of less than 50% 
will rarely be acceptable. Therefore, we studied three different recovery levels: 50, 95 
and 99.8% (touching bands). 

Mapping production rate vs. plate numberfor different values of a. Our objective is 
to define conditions (sample size, k’, No) for maximum production rate as a function of 
(a) different values of CI and (b) the desired (or acceptable) recovery level (50-100%). 
This requires mapping PR as a function of these variables. Our approach is illustrated 
in Fig. 7 for c( = 1.7, k, = 1 .O, and equal weights of X and Yin the sample’. Different 
sample sizes were selected (w,/w, = wJw, = 0.05-0.40 in Fig. 7), and for each sample 
size separations were carried out with different values of No. Fig. 1 illustrates one such 
simulation, for w,/w, = 0.05 and No = 200 ( n, = 100). Reference to Table II shows 

’ Later we shall discuss the effect of different values of w,/w, for the sample. 
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Fig. 7. Mapping production rate f’s (--- ) and recovery (---) of Y vs. column plate number No for 
different sample sizes w,./w,; k, = 1, k, = 1.7, W, = w,. 

that the recovery of 99% pure Y is equal to 90%. The production rate PR was 
calculated (arbitrary units) to be equal to [(wJwJ (fractional recovery of Y)]/(run 
time)a. 

Production rate (solid lines) and recovery (dashed lines) were then plotted 
against No as shown in Fig. 7 for different sample sizes (values of IQ&,). Vertical lines 
in Fig. 7 indicate the value of No for recoveries of Y of 50, 95 and 99.8%. Thus, for 
a sample size w&v, = 0.05,50% recovery of Yin its 99% pure fraction corresponds to 
No = 100; the production rate for this case is PR = 0.011. For sufficiently large 
samples (e.g., w,/w, = 0.4 in Fig. 7) it is not possible to recover 95% (or more) of Yin 
a 99% pure fraction; as No is increased indefinitely, a limiting recovery is observed 
(about 60% for wy/w, = 0.4 in Fig. 7). 

Determining the column plate number and sample size for maximum production 
rate (for a given recovery of Y). When the production rate and the recovery of Y have 
been mapped as in Fig. 7 for a given value of a, then PR and the associated value of No 
for a given recovery of Y can be plotted against sample size wJw,. This is illustrated in 
Fig. 8 for the data in Fig. 7 (a = 1.7). For a 50% recovery of Y, it is seen that 
a maximum production rate of 99% pure Y corresponds to values of w,/ws = 0.25 and 
N,, = 180. Similarly, maximum production rates for recoveries of 95% and 99.8% of 
99% pure Y correspond approximately to values of wy/w, and No of 0.08 and 300 and 
of 0.07 and 600, respectivelyb. Because the optimum sample sizes are fairly similar for 
95% and 99.8% recovery of Y, an average value of sample size vs. CI for 95-100% 
recovery can be assumed. 

a Fork, = I (as in the present example), the run time (retention time for Y) was defined as 1.0 for 
No = 100; we assumed that run time is proportional to Nii3 (corresponds to n = 0.5; see discussion in ref. 
19). This assumes that the column pressure is held constant while varying the column length and flow-rate 
together to obtain the required value of No. Any resulting change in column length also changes W, 
proportionately (taken into account here). 

b These WJW. values are Craig values; corresponding corrected values are W+J, = 0.125 (50% 
recovery), 0.04 (95% recovery) and 0.035 (99.8% recovery). 
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Recovery of Y = 50% 

0.03- _ 600 

CL% z" 

b 
-400 .a 

E 
2 

- 200 J 
2 
a 

0.2 0.4 0.1 

Sample size WY/w5 

0.1 

Fig. 8. Mapping production rate Pa and plate number No VS. sample size for different recovery values for Y; 
k, = 1, k, = 1.7. Data from Fig. 7. 

Values of w,/wS and No for different combinations of a and recovery of Y (for 
maximum PR) were determined in the same way (as illustrated in Figs. 7 and 8) for 
different values of k,. For the moment, we shall restrict our discussion to the case 
where k, = 1. Figs. 9 and 10 summarize these results, as plots of sample size and plate 
number VS. a, for different recoveries of Y (assuming equal amounts of X and Yin the 
sample). Given a value of a from an optimized analytical separation, and some desired 
recovery of Y in each run, Figs. 9 and 10 can be used to determine the appropriate 
values of No and WJW, for a maximum production rate. This is conceptually similar to 
the Knox-Pyper approach as summarized in Table I. The dashed curve in Fig. 9 is the 
sample size predicted by Knox and Pyper (Table I). It is in error (compared with the 
“99.8% recovery” curve) by a factor of about 2, owing to the failure to recognize 
sample interaction. 

Sample size and production rate. Fig. 11 is a plot of production rate for the 
optimum conditions summarized in Figs. 9 and 10. It is apparent from Fig. 11 that 
a significant increase in production rate is possible by the use of larger samples than 

1.2 1.4 1.6 1.8 2.0 

a 

Fig. 9. Optimum sample sizes for maximum production rate and various values of a and recovery of pure I’. 
Derived from Craig simulations as in Figs. 7 and 8 for k, = 1 and w, = +vV. 
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1.2 1.4 1.6 1.8 2.0 
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Fig. 10. Optimum plate number for maximum production rate and various values of G( and recovery of pure 
Y. Derived from Craig simulations as in Figs. 7 and 8 for k, = 1 and w’, = wy. 

correspond to “touching bands” (99.8% recovery in Fig. 11). Recoveries of 95% or 
50% allow increases in PR (compared with the touching-band case) of about 3-fold 
(95%) and lo-fold (50%) respectively. There is only a limited advantage in terms of 
production rate in accepting recoveries of pure Y less than 50%, especially for 
x > 1.5. 

Illustration of Figs. 9 and 10. Fig. 12 summarizes some chromatograms (both 
individual band and composite) obtained for various values of CI and recovery of Y, 
based on the optimized sample size and plate number data in Figs. 9 and 10. The 

I I I,, , 

1.2 1.4 1.6 1.8 2.0 
a 

Fig. 1 I Maxunum production rates for different values of c( and recovery of Y, corresponding to conditions 
in Figs. 9 and 10 (k, = 1, w, = w,). 
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Recovery of Y = 50-1s 95% 

Fig. 12. Craig simulations for optimum conditions from Figs. 9 and 10 (for maximum PR); k, = I, II’., = II’~. 

appearances of the chromatograms in Fig. 12 are generally similar for similar 
recoveries, suggesting that visual comparisons of actual runs (under overload 
conditions) with the examples in Fig. 12 (or Fig. 13, fork, = 3) can be used to calculate 
the possible recovery of pure product from a given run. Note also that it is possible to 
calculate cut-points (approximately) for the collection of pure product from these 
examples. 

Fig. 13. Craig simulations as in Fig. 12, except k, = 3. See text for details. 
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Effect qf k’. The procedure outlined in Figs. 7-l 1 was repeated for different 
values of k, (0.5 < k, < 3). The conclusions of this study are as follows: 

(1) the optimum values of wY/w, are about the same as for k, = 1 (see Fig. 9), 
depending on CI and the recovery of r; 

(2) the optimum values of No decrease for increasing k,; e.g., for a = 1.7, No = 
660 (for k, = 0.5), 300 (k, = l), 190 (k, = 2) and 130 (k, = 3); 

(3) PR changes by less than 10% for 0.5 < k’ < 3, with k’ = 1 being the optimum 
value. 

Fig. 13 summarizes a number of simulations (as in Fig. 12) for k, = 3, for the 
purpose of illustrating the predicted separations. 

Effect of a. The separation factor CI is of critical importance for maximum 
production rate in preparative HPLC. Fig. 14 is a log-log plot of the data in Fig. 12 in 
the form of production rate vs. (a - 1). The lines each have a slope of 3, meaning that 
PR % (constant) (a - 1) (ref. 3). Golshan-Shirazi and Guiochon” reported a lesser 
dependence of production rate on Q, but this seems to reflect a different approach to 
optimizing the production rate. It is not clear whether these workers considered the 
dependence of the required plate number N,, on a, and the related dependence of N,, on 
the time of separation. 

Applicabilty of the Knox-Pyper model to the preceding data. Now that we have 
mapped values of No for maximum production rate vs. k’ and CI, it is interesting to 
compare our conclusions with those of Knox and Pyper’, as summarized in eqns. 5 and 
7 (Table I). These relationships indicate that production rate can be maximized by 
selecting particular values of sample size and column plate number No (N,,,, in eqn. 5) 
for the case of “touching-band” separation. The value of A’,,, is further dependent on 
values of k’ (k,,) and a. The above discussion (Figs. 9-l 1) shows that this is also true of 
more heavily overloaded separations, such that the recovery of pure product is less 

99% recovery Of 

product Y 

(a-1) 

50% reco”ery( 

0 

i 
0 

051 .2 . 

Fig. 14. Dependence of production rate on the separation factor a for k, = 1 and M’, = w,,. 
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than 100% (50-99.8%) that is, there is an optimum value of No for maximum 
production rate, and this value of No varies with k’ and CI. 

Eqn. 5 can be better appreciated by recognizing that the factor q in this equation 
is related to the resolution R, of the small-sample separation that corresponds to the 
desired preparative separation. Thus, in the treatment of Knox and Pyper’, q is the 
ratio of plate numbers (No/N) for the small-sample vs. touching-band separation. 
Resolution can be expressed as 

R, = (l/4) (a - 1) N;‘” [k’/(k’ + l)] (9) 

from which it is seen that (only No varies) 

q = KRi’)I&I”2 (10) 

where, Rf is the resolution of the small-sample separation and R, is that of the 
preparative separation (optimized for maximum production rate). For “touching- 
band” separations as defined in ref. 1, R, = 1, so that q = (Rp)“’ for this case. Knox 
and Pyper’ proposed q = 3 as an optimum value, whereas we have suggested6 that 
q = 2.5 is more likely”. 

The treatment of Knox and Pyper’ for touching-band separations therefore 
suggests that the optimum value of No for a touching-band separation (100% 
recovery) corresponds to a small-sample resolution of the two bands equal to 
(2 5-3 0)“’ = 1.6-l .7. That is, regardless of the values of k’ and CI for the small-sample . . 
separation, the plate number N,, should be adjusted to give R, z 1.6 for a small sample. 
We shall next extend this important generalization to the case of more heavily 
overloaded separations, such that the recovery of pure product is less than 100%. 

As the sample loading is increased, the resolution R, of the final separation will 
decrease. If q = 2.5 is a generally optimum value, No and R: must also decrease for 
maximum production rate (eqn. 10). The simulations we have carried out and 
summarized in Figs. 9-l 1 allow us to check this hypothesis. For a 50% recovery of 
pure product, we find that Rf = 0.91 & 0.07 (1 S.D.) for k, = 1 and 1.25 < a < 2.0. 
Similarly, for k, = 3, Rf = 0.88 (fewer data points available). That is, the initial 
adjustment of column plate number to give a small-sample resolution R: = 0.9 
provides an (approximately) optimum value of N,, for maximum production rate (50% 
recovery, regardless of the (small-sample) values of k’ and CI. Eqn. 10 also indicates that 
the resolution of the overloaded run (providing 50% recovery of pure product) will be 
R = 0 9/(2 5)lj2 = 0.6. Examination of the corresponding separations in Figs. 12 and . . 
1; shows reasonable agreement with this prediction (elf:, standard resolution curves in 
ref. 26). 

A similar examination of the data reviewed here (Figs. 9-l 1 plus data fork, = 3) 
shows for a 95% recovery of pure product that the optimum value of Rf is 1.18 + 0.06, 
or the resolution of the overloaded run should be R s z 0.8 (eqn. 10 with q = 2.5; again, 
compare Figs. 12 and 13 with standard resolution curves). Finally, the optimum value 

y Our analysis of ref. 6 shows that y is related to the coefficient n in ref. 19: q = 2 + n. In this paper we 
assume that II = 0.5. The data in Figs. 9-l 1 are also based on a value of n = 0.5 (or y = 2.5). 
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of Rf for 99.8% recovery is 1.8. (c$, the Knox-Pyper prediction of 161.7). 
To summarize, our extension here of the Knox-Pyper relationship (eqn. 5) seems 

to provide a clear and simple picture of the interrelationship of optimum values of No 
with experimental conditions (values of k’ and m) and the desired recovery of pure 
product. Depending on the desired recovery of pure product, selecting a value of N,, 
that yields a certain small-sample resolution Rf will provide a maximum production 
rate, regardless of the values of k, or tl. 

Recovery oj’ X. The preceding discussion and Figs. 7-l 1 concern only the 
recovery of the second band Y from the separation of a mixture of X and Y. The 
recovery of Xparallels that of Y, but with some differences as summarized in Table IV. 
Here the corresponding recoveries of Xare shown for either a 50% or 95% recovery of 
Y, as a function of a and k,. The recovery of X tends to be greater than that of Y for low 
values of C.X, and higher for large CL For recoveries of Y > 95 %, the recoveries of X and 
Y are the same. 

Effect of varying concentrations ofproduct and impurities. Figs. 5 and 6 illustrate 
the general effect of changes in the relative concentrations of X and Y on the 
separation. The recovery of 99% pure X or Y increases (for the same weight of Xplus 
Y) as its relative concentration in the sample increases. This is also shown by the 
examples in Fig. 15. Here, a comparison is made with an optimized run for tl = 1.7, 
k, = 1, w, = wy and a 95% recovery of pure Y (top example). Relative to this starting 
case, the relative concentrations of X and Y are varied by 1:lO and 10: 1 (lower 
examples in Fig. 15). The series labeled I-X have the same sample size of the major 
band as in the “optimized run” (w/w, = 0.095) while the series labeled 1/4-X have 
a sample size that is one quarter as great (0.024), and the series labeled 4-X have 
a sample size that is four times greater. 

Several conclusions can be drawn from the examples in Fig. 15: 
(1) When one component of the sample is present in greater concentration than 

adjacent minor bands (ten times greater in Fig. 15), a larger weight of the major band 
can be separated (other conditions remaining the same), with an equivalent recovery of 
purified product (95% in this example). For a concentration of the minor band equal 
to 10% of the major band concentration, about four times as much of the major band 

TABLE IV 

RECOVERY OF 99% PURE X COMPARED WITH THAT OF Y 

k a Recovery of band X (X) 

Recovery of Recovery of 
Y = 50% Y = 95% 

1 1.25 58 95 
1.40 50 95 
1.70 26 93 
2.00 22 93 

3 1.25 60 94 
1.40 43 96 
1.70 30 94 
2.00 28 93 
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Optimized conditions 

WY = 0.1 \Nx 

100/92% 
1/4-x A___. 
1-x 

4-x 

100/87% ILL 
96/67% 

ILL 

wx = 0.1 WY 

85/100% Al 
61/99% 

AA 

19/95% 

AA 

Fig. 15. Craig simulations for two sample components that are present in different concentrations. 
Conditions: No = 400, weight of major band = w/w, = 0.095, k, = 1, k, = 1.7 (U = 1.7). Separation for 
“optimized conditions” (top) has w, = wy. Other separations have a lo-fold difference in the concentrations 
of Xand Y. Values in figure (e.g., 95/95%) refer to recovery of Xand Y at 99% purity. Weight of major band 
in “l/-XT?’ runs is (0.095/4) = 0.024: weight of major band in “4-X” runs is (0.095 4) = 0.38. 

can be separated per run, with the same purity and recovery (99% and 95% here). 
(2) Conversely, the recovery and/or purity of a minor fraction will be lower. In 

the examples in Fig. 15, a 95% recovery of 99% pure impurity is not even possible. 
(3) The best strategy for maximizing PR for the minor bands in Fig. 15 is to 

charge a 4-X sample, collect 95% of the minor band and reseparate the total fraction 
(one run) under the same conditions. For the examples in Fig. 14, a 95% recovery of 
99% pure minor component is possible in this way. 

(4) It is also seen that a better recovery occurs of a minor band that elutes later 
rather than earlier, e.g., a 67% recovery of 99% pure material in the 4-X example in 
Fig. 14 compared with 19% when the minor band elutes earlier. 



PREPARATIVE HPLC UNDER ISOCRATIC CONDITIONS. I. 81 

CONCLUSIONS 

Table I outlines a number of general conclusions concerning the selection of 
optimum conditions for the maximum production rate of purified product, as derived 
from the simple Knox-Pyper model. These rules remain qualitatively unchanged when 
the sample size is increased into the heavily overloaded region. Thus, for every 
separation there will be an optimum value of No, which is determined by values of a, k, 
and the desired recovery of product. The use of either larger or smaller values of No will 
result in a decrease in the possible production rate. The plots in Fig. 8 show, however, 
that values of PR are not highly sensitive to the exact value of No chosen. A change in 
No by + 50% is not very significant (+ lO-20% change in production rate), provided 
that the sample size is adjusted to maintain the desired recovery of Y, i.e., larger 
samples for larger values of No and smaller samples for smaller No values. 

The optimum value of No for a given preparative separation can be estimated 
from the small-sample separation. The column plate number should be adjusted so 
that the resolution (RJ’) of the corresponding small-sample separation equals about 0.9 
for a 50% recovery of pure product, about 1.2 for 95% recovery and 1.7 for 99.8% 
recovery. These observations represent a straightforward extrapolation of recommen- 
dations put forth by Knox and Pyper’. 

Another conclusion from this study is that a maximum production rate is 
favored by a k’ value for band X (k,) of about 1”. However, PR changes by less than 
10% for 0.5 < k, < 3. However, if the solvent recovery costs are a major part of the 
total purification costs, lower values of k, will be economically favored despite some 
decrease in PR. 

Part 1112’ discusses an additional feature of these overlapping-band separations, 
namely differences in column capacity values (w,) for two adjacent bands in the 
chromatogram (Xand Y). When this occurs, it can have a major effect on the optimum 
sample size and production rate. In view of this resulting complication, attempts at the 
precise optimization of preparative HPLC separations are probably premature at 
present. For the moment, it seems more important to seek a semi-quantitative 
description of these separations that can be used to guide the (necessarily) trial- 
and-error development of final preparative HPLC procedures. 

APPENDIX 

Algorithm for calculating the distributon of two compounds Xand Yin a Langmuir-type 
system as afunction of the total weights of Xand Yin the combinedmobile andstationary 
phases 

A one-stage equilibrium is assumed, having a mobile-phase volume of 1 .O ml and 
a stationary phase capacity of 0.1 g of sample. The weights of Xand Yin the mobile (m) 
and stationary (s) phases are wxm, w,.., w,, and wyS. The total weights w, and w, of 
Xand Yin the stage are known. The capacity factors of Xand Y (small sample) are k, 
and k,. The following derived quantities are first calculated for specified values of k, 
and k,: 

n This assumes that a does not vary as the solvent strength is changed. If CL changes with k’, then 
a larger value of k’ will be optimum in terms of production rate (and vice versa, if tl decreases with k’). 
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c1 = ky/kx 
D, = (OS/k,) + 0.7 k:.37 
D, = (0.5/k,) + 0.7 k;.37 
C = 0.62 10Dxk-0,4 
C” = 0 62 10D~ks-o.4 

Y . 

wmax = 0.175 -‘0.013 log k, 

Wtot = w, + wy 

We first compare wto, with w,,,: if w,,, > wmax, see procedure A. If w,, is not 

> 1.2lmax, see procedure 3. 
Procedure A. Check to see if w, or w, = 0; if so, 

for w, = 0, wyS = 0.1, wym = 0.1 - wy; 
for wy = 0, w,, = 0.1, wXm = 0.1 - UJ,. 

If neither w, or w, = 0, then 

Q = w, -I- wy - 0.1 
‘4=1--a 
B = [w&i - l)] + O.laQ 
C = -w,aQ 
w,, = [- B $ (B’ - 4AC)“‘]/2A 

W xs = Wx - Wxm 

WYS = 0.1 - wxs 

Wym = WY - WYS 

Procedure B. 

J, = w, + (@1’2wy)wy 
Jy = wy + (CI-1’2w,)w, 

R, = (l/k,) + CxJfl 
Ry = (l/k,) + CyJ; 

Wx, = wz/(l + Rx) 

wxm = 

WYS = w;;(1::,, 

Wym = wy - wyx 

SYMBOLS (PARTS I-III) 

Reference to equations or figures in the various papers in this series is identified 
by use of I-, II- or III; e.g., eqn. III-3 refers to eqn. 3 in Part III. 
A, B, C coefficients (constant for a given system) in the Knox equation (eqn. H-3) 

b,, by Langmuir coefficients for X and Y (eqns. III-4 and -5) 

CX, Cy concentrations of X and Y in mobile phase (mole fractions) 

d, column inside diameter (cm) 

&I solute diffusion coefficient (cm2/s) 

d, column-packing particle diameter (pm) 
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F 
h 
H 

k’ 

ko 

k, 
K 
L 

m, s 
h4 
n 

; 

N:, 
N opt 

P 

PR 

Y? 
Rg 
SA 

to 

4 
tm t, 
V 

VITI 

VS 

w 

flow-rate (ml/min) 
reduced plate height (eqn. 11-3) 
plate height = L/No 

solute capacity factor 
value of k’ for a small sample 
value of k. for solute Y 
Equilibrium constant (eqn. 111-2) 
column length (cm) 
mobile and stationary phases 
solute molecular weight 
parameter which relates values of No to flow-rate, equal to d(log h)/ 
d(log V) (eqn. II-6 and Table II-l) 
number of Craig stages in a computer simulation; n, = [k’/(l + k’)]N, 

column plate number for a large sample of Y (eqn. I-2) 
value of N for a small sample; in computer simulations, NO = (1 + k’)n,/k’ 
optimum value of No for a preparative HPLC separation (eqn. I-5) 
column pressure (p.s.i.) 
production rate (mg/h of purified product) 
column efficiency parameter (eqn. I-6) 
resolution of preparative separation 
resolution of small-sample separation 
stationary phase surface area for a column (m2) 
column dead-time (min) 
retention time (min) for a small sample; also, run-time (eqn. 11-I) 
value of tf: for solutes X or Y (min) 
constant defined by eqn. II-l 1 
column dead-volume (ml) 
maximum volume of injected sample that will not affect a preparative 
separation (ml) (eqn. I-8) 
total weight of injected sample; usually combined weights of Xand Y (mg) .^. ._ 

w, x, y, z constants defined by eqn. II-7 
WS column saturation capacity (mg) 
W SXI w,Y w, values for X and Y (mg) 
WX weight of solute X injected onto the column (mg) 
WX” eqn. I-3 
WXS weight of solute in stationary phase (mg) 

WY weight of solute Y injected onto the column (mg) 
W baseline band width (min); see Figs. 2 and 3 
wo value of W for a small sample 

>,“Y 
subscripts referring to bands X and Y 
adjacent sample bands; Y corresponds to the desired product and X is the 
preceding band 

a separation factor for two solutes 
mobile phase reduced velocity (eqn. 11-5) 
mole fraction of X or Yin the stationary phase; normally assumes equal 
numbers of X, Y or mobile phase molecules in a saturated monolayer 
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